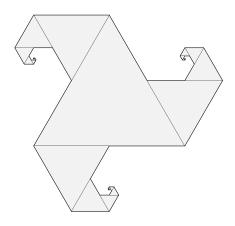
## XXXIII OLIMPIADA COSTARRICENSE DE MATEMÁTICAS

MEP - UCR - TEC - UNA - UNED - MICITT



# SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL



Nivel III  $(10^{\circ} - 11^{\circ} - 12^{\circ})$ 

2021













#### Estimado estudiante:

La Comisión de las Olimpiadas Costarricenses de Matemáticas 2021 le saluda y le da la más cordial bienvenida a la Primera Eliminatoria Nacional de estas justas académicas, deseándole los mayores éxitos.

La prueba consta de un total de 20 preguntas de selección única.

### INDICACIONES GENERALES

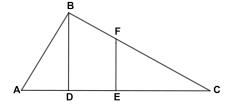
- Debe trabajar en forma individual.
- Las respuestas a las preguntas que se le formulan, deben ser consignadas ÚNICAMENTE en el cuestionario virtual.
- Los dibujos que aparecen en la prueba no necesariamente están hechos a escala.
- Los únicos instrumentos cuyo uso se permite son los necesarios para escribir y dibujar. Se prohíbe el uso de libros, libretas de notas, tablas y calculadora.
- El examen tiene una duración máxima de tres horas.

| SIMBOLOGÍA            |                                                               |                                     |                                                               |
|-----------------------|---------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------|
| $\overline{AB}$       | segmento de extremos $A$ y $B$                                | $\angle ABC \approx \angle DEF$     | congruencia de ángulos                                        |
| AB                    | medida de $\overline{AB}$                                     | $\triangle ABC \cong \triangle DEF$ | congruencia de triángulos                                     |
| $\overrightarrow{AB}$ | rayo de extremo $A$ y que contiene a $B$                      | $ABC \leftrightarrow DEF$           | correspondencia respectiva<br>entre puntos                    |
| $\overrightarrow{AB}$ | recta que contiene los puntos $A$ y $B$                       | $\triangle ABC \sim \triangle DEF$  | semejanza de triángulos                                       |
| $\angle ABC$          | ángulo de rayos $\overrightarrow{BA}$ y $\overrightarrow{BC}$ | $\overline{AB}\cong\overline{CD}$   | congruencia de segmentos                                      |
| $m\angle ABC$         | medida de $\angle ABC$                                        | $\widehat{AB}$                      | arco de extremos $A$ y $B$                                    |
| $\triangle ABC$       | triángulo de vértices $A,B,C$                                 | $m\widehat{AB}$                     | medida de $\widehat{AB}$                                      |
| $\Box ABCD$           | cuadrilátero de vértices $A,B,C,D$                            | (ABC)                               | área de $\Delta ABC$                                          |
| Ш                     | paralelismo                                                   | (ABCD)                              | área de $\Box ABCD$                                           |
|                       | perpendicularidad                                             | P - Q - R                           | P, Q, R puntos colineales, con $Q$ entre los puntos $P$ y $R$ |

1. En la figura,  $\overline{BD} \perp \overline{AC}$  y  $\overline{EF} \parallel \overline{BD}$ . Si AD = 14, DC = 36 y el área del triángulo ABC es el doble que el área del triángulo EFC, entonces la medida de  $\overline{EC}$  corresponde a



- (b) 18
- (c) 25
- (d) 30



- ullet Opción correcta: (d)
- Solución: Note que BD y FE son alturas respectivas de los triángulos ABC y EFC. Sea H=BD, h=EF y x=EC.

Se tiene que (ABC) = 25H y  $(EFC) = \frac{xh}{2}$ .

Por semejanza, se obtiene que  $\frac{H}{h} = \frac{36}{x}$  y así  $x = \frac{36h}{H}$ .

Luego, como (ABC)=2(EFC), entonces se tiene que 25H=xh y sustituyendo la x, se obtiene que 5H=6h y  $h=\frac{5H}{6}$ .

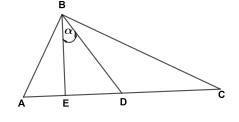
Finalmente, se tiene que  $x = \frac{36 \cdot \frac{5H}{6}}{H} = 30.$ 

2. En la figura,  $\overline{BE}$  y  $\overline{BD}$  son la altura y la mediana respectivas del triángulo ABC. Si  $m\angle BAC=60^\circ$  y  $m\angle ACB=30^\circ$ , entonces  $\tan\alpha$  corresponde a

(a) 
$$3 + \sqrt{3}$$

- (b)  $\frac{\sqrt{3}}{3}$
- $(c) \ \frac{3-\sqrt{3}}{2}$





- Opción correcta: (b)
- Solución: Sea x = ED y BE = h. Como  $\overline{BD}$  es mediana del  $\triangle ABC$ , entonces AD = CD. Se tiene entonces que CD = AE + x.

Luego,  $\tan 60^{\circ} = \frac{h}{AE} \Longrightarrow AE = \frac{h}{\sqrt{3}} \text{ y } \tan 30^{\circ} = \frac{h}{2x + AE} \Longrightarrow x = \frac{\sqrt{3}h}{3}.$ 

Así,  $\tan \alpha = \frac{\sqrt{3}}{3}$ .

- 3. Sean a y b números enteros, tales que al menos uno de ellos es positivo y a+5b<40. ¿Cuántas parejas (a,b) satisfacen que  $\frac{a^2+b^{-2}}{a^{-2}+b^2}=9$ ?
  - (a) 4
  - (b) 19
  - (c) 23
  - (d) Infinitas
- Opción correcta: (d)
- Solución: Note que

$$\frac{a^2 + b^{-2}}{a^{-2} + b^2} = \frac{a^2 + \frac{1}{b^2}}{\frac{1}{a^2} + b^2} = \frac{\frac{a^2 b^2 + 1}{b^2}}{\frac{a^2 b^2 + 1}{a^2}} = \frac{a^2}{b^2} = \left(\frac{a}{b}\right)^2 = 9$$

$$\frac{a}{b} = \pm 3$$

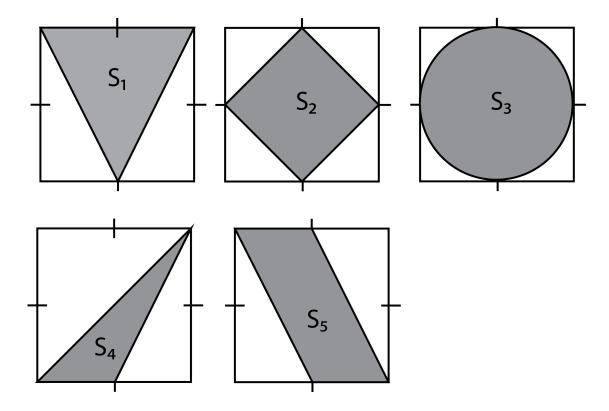
$$a = \pm 3b$$

- a) Si a = 3b entonces a + 5b = 3b + 5b = 8b < 40, por tanto b < 5. Para que al menos uno sea positivo entonces 0 < b < 5, con lo cual hay 4 pares ordenados.
- b) Si a = -3b entonces a + 5b = -3b + 5b = 2b < 40, por tanto b < 20. Como a y b tiene signos contrarios hay una infinidad de pares ordenados.
- 4. En una reunión, respetando el distanciamiento, participan 20 personas. De estas, 15 se conocen entre ellos, mientras que los otros 5 no conocen a ninguno de los participantes. Los que se conocen, se saludan chocando los codos, mientras que los que no se conocen, saludan levantando la mano. ¿Cuántos saludos levantando la mano ocurren?
  - (a) 75
  - (b) 85
  - (c) 95
  - (d) 100
- ullet Opción correcta: (b)
- Solución:

Cada una de las 15 personas que conoce a las demás saluda a 5 personas levantando la mano. Por otro lado, las 5 personas que no conocen a nadie saludan a 19 personas levantando la mano. Como cada saludo se cuenta dos veces, entonces la cantidad total es

$$\frac{15\times5+5\times19}{2} = 85.$$

5. Los cuadrados de la figura son todos iguales, en ellos se han marcado los puntos medios de sus lados. En cada cuadrado se ha sombreado un área y se le ha llamado a la medida de esas áreas sombreadas  $S_1$ ,  $S_2$ ,  $S_3$ ,  $S_4$ ,  $S_5$  tal como se muestra.



Sea L el área de uno de los cuadrados. De las siguientes relaciones, la que es CIERTA es

- (a)  $S_2 + S_5 + S_1 < S_4 + S_3$
- (b)  $S_1 + S_2 < S_4 + S_5$
- (c)  $S_4 \le S_5 = S_1 = S_3 \le S_2$
- (d)  $S_5 + S_3 \ge \frac{5L}{4}$
- ullet Opción correcta: (d)
- Solución: Se puede observar que cada área sombreada esta determinada por cuartas partes a excepción del círculo.

excepcion
$$S_1 = \frac{2L}{4}$$

$$S_2 = \frac{2L}{4}$$

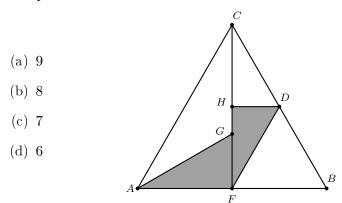
$$S_3 > \frac{3L}{4}$$

$$S_4 = \frac{L}{4}$$

$$S_5 = \frac{2L}{4}$$

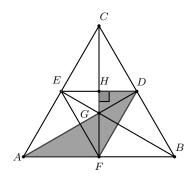
Comparando áreas obtenemos que  $S_5 + S_3 \ge \frac{5L}{4}$ 

- 6. El menor entero positivo que tiene residuo 4 cuando se divide por 7 y residuo 5 cuando se divide por 12, está entre
  - (a) 32 y 42
  - (b) 51 y 58
  - (c) 60 y 72
  - (d) 76 y 84
- Opción correcta: (b)
- Solución: Dado que el número deja residuo 5 cuando se divide por 12, es de la forma 12n + 5. Ahora bien, 12n + 5 = 7n + 5n + 5 = 7n + 5(n + 1), de manera que cuando se divide por 7 deja el mismo residuo que deja 5(n + 1) cuando se divide por 7. Ahora bien, el menor n para el cual 5(n + 1) deja residuo 4 cuando se divide por 7 es para n = 4. Se sigue que el menor número es  $12 \cdot 4 + 5 = 53$
- 7. En el triángulo equilátero  $\triangle ABC$ , los puntos A, G, D son colineales, con D punto medio del  $\overline{BC}$ , además  $\overline{CF}$  es una altura del  $\triangle ABC$  y  $\overline{HD}$  es perpendicular a  $\overline{CF}$ . Si el trapecio  $\Box ACDF$  tiene un área de 18 cm² entonces el área, en cm², del polígono AFDHG corresponde a



- Opción correcta: (c)
- Solución:

Completando la figura como se muestra a continuación, se observa que el trapecio ACDF es formado por tres triángulos equiláteros de área 6 cm², además el triángulo EFD es formado por 6 triángulos de área 1 cm² y el triángulo AFE es formado por 2 triángulos de área 3 cm². Por tanto el área del poligono AFDHG es 7 cm²



- 8. Sean  $x_1$  y  $x_2$  números reales tales que  $x_2 > x_1$ . Si  $x_1 + x_2 = 4$  y  $x_1x_2 = \frac{1}{2}$ , entonces el cociente  $\frac{x_1}{x_2}$  es un número
  - (a) irracional
  - (b) entero primo
  - (c) entero compuesto
  - (d) racional no entero
- Opción correcta: (a)
- Solución:

Como  $x_1$  y  $x_2$  son las soluciones de la ecuación, se puede expresar como  $2(x - x_1)(x - x_2) = 0$ . Desarrollando se obtiene

$$2\left[x^{2} - x(x_{1} + x_{2}) + x_{1} \cdot x_{2}\right] = 2\left(x^{2} - 4x + \frac{1}{2}\right) = 2x^{2} - 8x + 1 = 0$$

Aplicando fórmula general se tiene  $x_1=\frac{4-\sqrt{14}}{2},\,x_2=\frac{4+\sqrt{14}}{2},$  por lo que

$$\frac{x_1}{x_2} = \frac{4 - \sqrt{14}}{4 + \sqrt{14}} = 15 - 4\sqrt{14}$$

Lo cual es un número irracional.

- 9. Una hormiga camina por un teclado numérico como el de la figura, moviéndose de un número a otro de manera horizontal o vertical; empieza en el número 1 y termina su recorrido al llegar a la tecla del 0 por primera vez. Considere el número n formado al concatenar los dígitos que recorre hasta finalizar. De las siguientes afirmaciones
  - I. n es divisible por 3
  - II. n es divisible por 4
  - III. n posee un número impar de dígitos

con total certeza se puede afirmar que son verdaderas

- (a) La I y la II
- (b) La II y la III
- (c) La I y la III
- (d) Todas

- 1 2 3
- 4 5 6
- 7 8 9
  - 0

• Opción correcta: (b)

#### • Solución:

La primera es falsa dado que al moverse de forma vertical, los dígitos aumentan en múltiplos de 3, pero para llegar del 1 al cero, debe recorrer parcialmente un fila horizontal por lo que la suma de dígitos no sera divisible por 3.

La segunda es verdadera porque los últimos dos dígitos de n son 8,0 y el 80 es divisible por 4

La tercera es verdadera porque las rutas más rápidas de la hormiga contienen 5 dígitos, por ejemplo el número 12580, cualquier otra ruta requiere aumentar un número par de movimentos, por lo que el número de dígitos siempre será impar.

- 10. La suma de las cifras del menor número natural que al ser dividido por 195, 117 y 975 tiene como residuo 75, corresponde a
  - (a) 3
  - (b) 18
  - (c) 21
  - (d) 27
  - Opción correcta: (a)
  - Solución: Calculamos el mínimo común múltiplo de 195, 117 y 975 y le sumamos 75, de esa manera obtenemos el número 3000 y la suma de sus cifras es 3.
- 11. Una forma de escribir el número 2021 como una suma de enteros positivos consecutivos crecientes es 1010 + 1011. La cantidad total (incluyendo 1010 + 1011) de formas en que 2021 se puede escribir como suma de dos o más enteros positivos consecutivos crecientes es
  - (a) 1
  - (b) 2
  - (c) 3
  - (d) 4
  - Opción correcta: (c)
  - Solución: Buscamos enteros positivos m y n tal que

$$2021 = m + (m+1) + \ldots + (m+n) = (n+1)m + (1+2+\ldots+n) = (n+1)m + \frac{n(n+1)}{2}.$$

Lo anterior implica que  $2 \cdot 2021 = (n+1)(2m+n)$  y observamos que 2m+n > n+1 > 1, es decir, el factor n+1 es el menor y ambos factores son mayores que 1. El número  $2 \cdot 2021$  se factoriza como  $2 \cdot 43 \cdot 47$  y por lo tanto las posibles combinaciones son

$$n+1=2, \ 2m+n=2021, \quad n+1=43, \ 2m+n=2\cdot 47, \quad n+1=47, \ 2m+n=2\cdot 43.$$

Estas nos dan en efecto tres soluciones: (m, n) = (1010, 1), (26, 42), (20, 46).

12. Considere un cuadrado con un círculo de radio R tangente a sus cuatro lados y un círculo de radio r tangente a dos de sus lados y al círculo de radio R, como se muestra en la figura. Entonces el cociente R/r es igual a



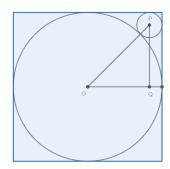
(b) 
$$2 + 2\sqrt{3}$$

(c) 
$$4 + \sqrt{3}$$

(d) 
$$3 + 2\sqrt{2}$$



- Opción correcta: (d)
- Solución: Sean O y P los centros de los círculos y sea Q el pie de la perpendicular desde P al radio perpendicular al lado del cuadrado, como en la figura.



El triángulo OPQ es un triángulo rectángulo isósceles cuyos catetos miden R-r y su hipotenusa mide R+r. Por lo tanto,

$$R + r = \sqrt{2}(R - r) \Longrightarrow (\sqrt{2} - 1)R = (\sqrt{2} + 1)r \Longrightarrow \frac{R}{r} = \frac{\sqrt{2} + 1}{\sqrt{2} - 1} = (\sqrt{2} + 1)^2 = 3 + 2\sqrt{2}.$$

13. Sean x y y números reales no nulos tales que

$$\frac{5x+y}{x-5y} = 3$$

Entonces el valor de  $\frac{5y+x}{y-5x}$  es igual a

(a) 
$$\frac{3}{41}$$

(b) 
$$-\frac{3}{41}$$

(c) 
$$\frac{41}{3}$$

(d) 
$$-\frac{41}{3}$$

• Opción correcta: (b)

• Solución: Observe que  $\frac{5x+y}{x-5y} = 3$  implica que 5x+y = 3x-15y, despejando x en términos de y se obtiene que x = -8y. Sustituyendo en la expresión solicitada se obtiene que

$$\frac{5y+x}{y-5x} = \frac{5y+(-8y)}{y-5(-8x)} = \frac{-3y}{41y} = -\frac{3}{41},$$

porque  $y \neq 0$ .

- 14. Sea n un número natural. Sea  $p=n^4+4n^2+3$ . Si se sabe que p es primo, entonces necesariamente se cumple que la suma de los dígitos de  $2021^{p-1}$  es igual a
  - (a) 16
  - (b) 20
  - (c) 24
  - (d) 25
  - Opción correcta: (d)
  - Solución:

Observe que  $n^4 + 4n^2 + 3 = (n^2 + 1)(n^2 + 3)$ . Como p es primo entonces necesariamente debe cumplirse que  $n^2 + 1 = 1$ , de donde n = 0 y p = 3. En consecuencia  $2021^{p-1} = 2021^2 = 4084441$ . Y la suma de los dígitos es igual a 25.

- 15. Sean a, b números reales con a > b tales que  $\frac{a}{b} + \frac{b}{a} = 3$  entonces el valor de  $\frac{a^3 + b^3}{a^3 b^3}$  es
  - $a) \ \frac{-\sqrt{5}}{2}$
  - $b) \ \frac{2+\sqrt{5}}{2}$
  - $c) \ \frac{2+\sqrt{5}}{2}$
  - $d) \ \frac{\sqrt{5}}{2}$
  - Opción correcta: d).
  - Solución: Note que  $\frac{a}{b} + \frac{b}{a} = \frac{a^2 + b^2}{ab} = 3$ , así que  $a^2 + b^2 = 3ab$ . Vea que

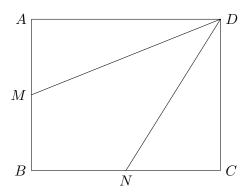
$$\frac{a^3 + b^3}{a^3 - b^3} = \frac{(a+b)(a^2 - ab + b^2)}{(a-b)(a^2 + ab + b^2)} = \frac{(a+b) \cdot 2ab}{(a-b) \cdot 4ab} = \frac{1}{2} \cdot \frac{a+b}{a-b},$$

Como

$$\left(\frac{a+b}{a-b}\right)^2 = \frac{a^2+2ab+b^2}{a^2-2ab+b^2} = \frac{5ab}{ab} = 5,$$

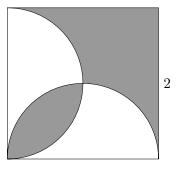
se sigue que  $\frac{a^3 + b^3}{a^3 - b^3} = \frac{1}{2} \cdot \frac{a + b}{a - b} = \frac{\sqrt{5}}{2}$ .

- 16. Si los números de 6 dígitos de la forma: 4a62b1 y 5c3ab4 son ambos múltiplos de 3, con a,b y c dígitos. Un posible valor para c es
  - a) 4
  - b) 2
  - c) 6
  - d) 8
  - Opción correcta: a)
  - Solución: Como ambos números son múltiplos de 3, se sigue que ambas sumas 4+a+6+2+b+1=13+a+b y 5+c+3+a+b+4=12+a+b+c son múltiplos de 3, al restarlos, obtenemos que c-1 debe ser múltiplo de 3, por lo que c debe ser alguno de 1,4 o 7.
- 17. Sea ABCD un rectángulo con AB=25 cm, AD=20 cm. Sean M y N los puntos medios de  $\overline{AB}$  y  $\overline{BC}$  respectivamente, entonces el área en centímetros cuadrados, del cuadrilatero MBND es



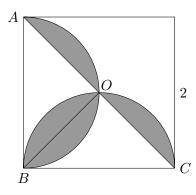
- a) 125
- b) 200
- c) 250
- d) 375
- Opción correcta: c)
- Solución: Note que cada uno de los triángulos  $\triangle AMD$  y  $\triangle NCD$  contiene un cuarto del área total del rectangulo, así que el el cuadrilatero MBND contiene la mitad del área del rectangulo, esto es 250 cm<sup>2</sup>.

18. Se trazan dos semicírculos sobre los dos lados adyacentes de un cuadrado de lado 2. El área de la región sombreada es

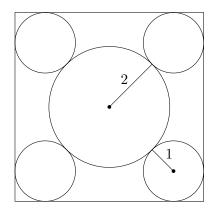


- a)  $1 + \pi/2$
- b) 2
- c)  $\pi$
- d) 1
- Opción correcta: b).
- Solución:

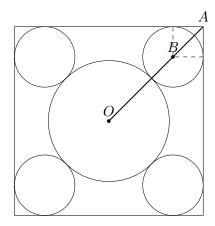
Sea O el centro del cuadrado y sean A, B, C como en la figura de abajo, y notamos que el área de los sectores circulares con cuerda OB son iguales a las de los sectores círculares con cuerda AO y OC en los respectivos círculos, así que, vemos que el total del área sombreada es medio cuadrado, esto es 2.



- 19. En la siguiente figura, el círculo central tiene radio 2 y los círculos pequeños son de radio 1 y tangentes externamente al de radio 2. Las tangentes a los círculos pequeños forman un cuadrado. La longitud del lado de este cuadrado es
  - a)  $3\sqrt{2} + 2$
  - b) 6
  - $c) 4\sqrt{2}$
  - d) 8
  - Opción correcta: a).



• Solución: Sea O el centro del círculo grande, A un vértice del cuadrado y B el centro del círculo pequeño que se encuentra entre O y A. La distancia entre O a B es la suma de los radios que es 3, y como los pies de las perpendiculares de B al cuadrado, forman junto con A un cuadrado de lado 1, se sigue que  $BA = \sqrt{2}$ . Por lo tanto  $OA = 3 + \sqrt{2}$ , así que la diagonal del cuadrado mide  $6 + 2\sqrt{2}$ , por lo tanto, su lado mide  $\frac{6 + 2\sqrt{2}}{\sqrt{2}} = 2 + 3\sqrt{2}$ .



- 20. El equipo de fútbol OLCOMA consta de 13 jugadores (11 titulares y dos en banca), cada uno de ellos posee una camisa con un número entero positivo menor a 14 y distintos entre jugadores. La probabilidad de que al seleccionar 7 jugadores al azar, la suma de los números de sus camisas sea impar, corresponde a
  - (a)  $\frac{212}{429}$
  - (b)  $\frac{77}{156}$
  - (c)  $\frac{841}{902}$
  - d)  $\frac{53}{55}$

Opción correcta: (a)

- Solución: La cantidad de maneras de escoger 7 jugadores de los 13 corresponde a  $\binom{13}{7} = 1716$ . Para que el resultado de una suma sea impar, debe haber una cantidad impar de números impares. Hay 7 números impares y 6 números pares. Estudiamos los casos favorables
  - 1 camisa impar y 6 camisas pares:  $\binom{7}{1}\binom{6}{6} = 7$ .
  - 3 camisas impares y 4 camisas pares:  $\binom{7}{3}\binom{6}{4} = 525$ .
  - 5 camisas impares y 2 camisas pares:  $\binom{7}{5}\binom{6}{2} = 315$ .
  - 7 camisas impares y 0 camisas pares  $\binom{7}{7}\binom{6}{0} = 1$ .

Así, la probabilidad es

$$\frac{7+525+315+1}{1716} = \frac{848}{1716} = \frac{212}{429}.$$