Lista de problemas 3

Mayo 2020

Problema 1. Sean a, b y c números naturales tales que:

$$ab(c+ab^2) + c^2(b^2c+a^3) = b^2c(a^2c+b) + a(a^2b+c^3)$$

Demuestre que al menos uno de los números a, b o c es un cuadrado perfecto.

Problema 2. Sea N un entero positivo. Anonymous y Olcomae juegan con un montón de N piedras, alternándose los turnos, comenzando por Anonymous. Si al comienzo de un turno, el montón tiene k piedras, una jugada válida consiste en escoger un entero positivo m primo relativo con k, y retirar m piedras del montón. El jugador que al retirar cierta cantidad de piedras, deje el montón con una única piedra, pierde el juego. Determine cuál jugador tiene una estrategia ganadora.

Problema 3. Determine todas las parejas de enteros no negativos (n,k) con $n \le k$ tales que:

$$\frac{k(k+1)}{2} = 2^k - 2(n^2 + 1)$$

Problema 4. En el triángulo $\triangle ABC$, los puntos D y E son las segundas intersecciones de la circunferencia de centro A y radio AC con el circuncírculo de $\triangle ABC$ y la recta perpendicular a $\stackrel{\longleftarrow}{AB}$ que pasa por C, respectivamente. Demuestre que B, E y D yacen sobre una misma recta.

Problema 5. Se tiene un tablero de 3×3 dividido en cuadros unitarios. Una serpiente de longitud k es un animal que ocupa una k-tupla ordenada de casillas en el tablero (s_1, \ldots, s_k) , donde las casillas de la k-tupla son distintas dos a dos, y además las casillas s_i y s_{i+1} deben compartir un lado, con $i = 1, \ldots, k-1$. Después de ser colocada en un tablero finito de $n \times n$, si la serpiente está ocupando las casillas (s_1, \ldots, s_k) y s es una casilla vacía que comparte un lado con s_1 , la serpiente puede moverse para posicionarse en las casillas $(s, s_1, \ldots, s_{k-1})$. La serpiente se ha volteado si al principio ocupaba las casillas (s_1, s_2, \ldots, s_k) , pero después de una cantidad finita de movimientos llegó a ocupar las casillas $(s_k, s_{k-1}, \ldots, s_1)$.

Encuentre el mayor entero k tal que se puede colocar una serpiente de longitud k en un tablero de 3×3 , tal que esta serpiente puede voltearse.

Problema 6. Sea n > 6 un número perfecto y sea $n = p_1^{\epsilon_1} \cdot p_2^{\epsilon_2} \cdot \ldots \cdot p_k^{\epsilon_k}$ su factorización prima, con $1 < p_1 < p_2 < \cdots < p_k$. Pruebe que ϵ_1 es par.

Nota: Un número n es perfecto si la suma de sus divisores positivos es 2n.

Problema 7. Sea $\triangle ABC$ un triángulo isósceles con AB = AC. Sea \overline{AD} el diámetro del circuncírculo del triángulo $\triangle ABC$, y sea P un punto en el arco más pequeño de \widehat{BD} . La línea \overrightarrow{DP} interseca a los rayos \overrightarrow{AB} y \overrightarrow{AC} en los puntos M y N, respectivamente. La línea \overrightarrow{AD} interseca a las líneas \overrightarrow{BP} y \overrightarrow{CP} en puntos Q y R, respectivamente. Pruebe que el punto medio de \overline{MN} cae en el circuncírculo del triángulo $\triangle PQR$.

Problema 8. Se eligen enteros positivos b_1, b_2, \ldots que satisfacen la siguiente condición:

$$1 = \frac{b_1}{1^2} > \frac{b_2}{2^2} > \frac{b_3}{3^2} > \frac{b_4}{4^2} > \cdots$$

Además, r denota el mayor número real que satisface: $\frac{b_n}{n^2} \ge r$ para cada entero positivo n. ¿Cuáles son los posibles valores de r para todas las posibles elecciones de la sucesión (b_n) ?